The trends of Staphylococcus aureus antibiotics resistance in Iraq: A narrative review
DOI:
https://doi.org/10.59786/bmtj.226Keywords:
Staphylococcus aureus, Antibiotic resistanceAbstract
Staphylococcus aureus (S. aureus) is a major human pathogen that is able to develop resistance to multiple antibiotics with significant challenges in clinical treatment. The aims of this paper were to summarize the current understanding of S. aureus resistance to various antibiotic classes in Iraq, highlighting mechanisms of resistance, prevalence rates, and the need for further research. We conducted a narrative review using thematic approach to investigate the antibiotic sensitivity of S. aureus through searching two websites PubMed and Google Scholar. S. aureus resists β-lactam antibiotics through low-affinity PBP2a or β-lactamases. High resistance rates were observed in Iraq, with BlaZ gene sequences showing 100% similarity to those in other countries, suggesting a common origin or spread of genetic variants. Reports from Iraq revealed a high MRSA carriage rate among healthcare workers and the general community. Vancomycin resistance, mediated by vanA and vanB genes, has been reported globally. In Iraq, an 8% prevalence of VRSA was observed. Regarding MLS-B, tetracycline, and quinolone resistance, limited data from Iraq about the sensitivity pattern of these antibiotics is available. The available data are limited, highlighting significant gaps in understanding the full scope of resistance patterns. The high prevalence of antibiotic resistance in S. aureus in Iraq underscores the urgent need for comprehensive studies with international collaboration to develop effective public health strategies and improve antibiotic stewardship programs in Iraq.
Downloads
References
Ikuta KS, Swetschinski LR, Robles Aguilar G, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2022;400(10369):2221-2248. doi:10.1016/S0140-6736(22)02185-7
Frieri M, Kumar K, Boutin A. Antibiotic resistance. Journal of Infection and Public Health. 2017/07/01/ 2017;10(4):369-378. doi:https://doi.org/10.1016/j.jiph.2016.08.007
Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis. 2022;36(9):e24655. doi:https://doi.org/10.1002/jcla.24655
Reta A, Bitew Kifilie A, Mengist A. Bacterial Infections and Their Antibiotic Resistance Pattern in Ethiopia: A Systematic Review. Adv Prev Med. 2019;2019:4380309. doi:10.1155/2019/4380309
Van Boeckel TP, Gandra S, Ashok A, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. Aug 2014;14(8):742-750. doi:10.1016/s1473-3099(14)70780-7
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. Oct 12 2021;10(10)doi:10.3390/pathogens10101310
Hasan T, Al-Harmoosh R. Mechanisms of Antibiotics Resistance in Bacteria. Systematic Reviews in Pharmacy. 06/26 2020;11:817-823. doi:10.31838/srp.2020.6.118
Church NA, McKillip JL. Antibiotic resistance crisis: challenges and imperatives. Biologia. 2021;76:1535 - 1550.
MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nature Climate Change. 2018/06/01 2018;8(6):510-514. doi:10.1038/s41558-018-0161-6
Torimiro N, Moshood A, Eyiolawi S. Analysis of Beta-lactamase production and antibiotics resistance in Staphylococcus aureus strains. Journal of infectious diseases and immunity. 2013;5(3):24-28.
Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular mechanisms of drug resistance in Staphylococcus aureus. International journal of molecular sciences. 2022;23(15):8088.
Takayama Y, Tanaka T, Oikawa K, Fukano N, Goto M, Takahashi T. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus isolates from Japan. Annals of laboratory medicine. 2018;38(2):155-159.
Mohammed AA, Hussein NR, Arif SH, Daniel S. Surgical site infection among patients with Staphylococcus aureus nasal carriage. International Journal of Surgery Open. 2020;24:1-7.
Rasheed N, Hussein NR. The Nasal Carriage of Staphylococcus aureus and Its Antimicrobial Susceptibility Pattern in Secondary School Students in Kurdistan Region, Iraq. Journal of Kermanshah University of Medical Sciences. 2020;24(1):e99490.
Hassan RM, Abdullah MH, Aziz GM, Al-Sa’edy AJ. Molecular and Biochemical Characterizations of Staphylococcusaureus ß-Lactamase Recovered from Iraqi Patients with UTI. Indian Journal of Public Health. 2020;11(04):1673.
Khalaf A, AL-Tameemi H, Jasem Abdullah Y. Detection of Genes ermB, mecA, bla Z and msrA in Uropathogenic Staphylococcus aureus Isolates between the Gram-Positive Bacteria that Cause Urinary Tract Infections. Iranian Journal of War and Public Health. 2022;14(1):99-104.
AL-Ezzy AIA, Al-Zuhairi AH. Molecular detection of MecA, Blaz Genes and phenotypic detection of Antibiotic Sensitivity Pattern For S. aureus And MRSA Isolated From Dermal lesions of Sheep In Diyala Governorate-Iraq. Diyala Journal for Veterinary Sciences. 2023;1(1):50-65.
Wielders C, Fluit A, Brisse S, Verhoef J, Schmitz F. mecA gene is widely disseminated in Staphylococcus aureus population. Journal of clinical microbiology. 2002;40(11):3970-3975.
Kretschmer D, Gleske A-K, Rautenberg M, et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell host & microbe. 2010;7(6):463-473.
Rasheed NA, Hussein NR. Staphylococcus aureus: an overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. European Journal of Molecular & Clinical Medicine. 2021;8(3):1160-1183.
Ikuta KS, Swetschinski LR, Aguilar GR, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2022;400(10369):2221-2248.
Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends in microbiology. 2014;22(1):42-47.
Paterson G, Morgan F, Harrison E, et al. Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England. Journal of Antimicrobial Chemotherapy. 2014;69(4):907-910.
Kriegeskorte A, Peters G. Horizontal gene transfer boosts MRSA spreading. Nat Med. May 4 2012;18(5):662-3. doi:10.1038/nm.2765
Hasanpour AH, Sepidarkish M, Mollalo A, et al. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: a systematic review and meta-analysis. Antimicrob Resist Infect Control. Jan 29 2023;12(1):4. doi:10.1186/s13756-023-01210-6
Hussein NR, Assafi MS, Ijaz T. Methicillin-resistant Staphylococcus aureus nasal colonisation amongst healthcare workers in Kurdistan Region, Iraq. Journal of global antimicrobial resistance. 2017;9:78-81.
Naqid IA, Hussein NR, Balatay A, Saeed KA, Ahmed HA. Antibiotic susceptibility patterns of uropathogens isolated from female patients with urinary tract infection in Duhok province, Iraq. Jundishapur Journal of Health Sciences. 2020;12(3)
AL-Salihi SS, Karim GF, Al-Bayati A, Obaid HM. Prevalence of Methicillin-Resistant and Methicillin Sensitive Staphylococcus aureus Nasal Carriage and their Antibiotic Resistant Patterns in Kirkuk City, Iraq. Journal of Pure & Applied Microbiology. 2023;17(1)
Abdulkareem WL, Hussein NR, Mohammed AA, Arif SH, Naqid IA. Risk Factors Association for MRSA Nasal Colonization in Preoperative Patients in Azadi Teaching Hospital-Duhok, Kurdistan Region, Iraq. Science Journal of University of Zakho. 2020;8(3):88-91.
Hantoosh SM. Nasal Carriage of Vancomycin-and Methicillin-Resistant Staphylococcus aureus among Intermediate Students of Urban and Rural Schools of Muthanna Province in Iraq. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512). 2022;31(1):102-108.
Hussein NR, Basharat Z, Muhammed AH, Al-Dabbagh SA. Comparative Evaluation of MRSA Nasal Colonization Epidemiology in the Urban and Rural Secondary School Community of Kurdistan, Iraq. PLOS ONE. 2015;10(5):e0124920. doi:10.1371/journal.pone.0124920
Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of clinical investigation. 2014;124(7):2836-2840.
Périchon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2009;53(11):4580-4587.
Périchon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. Nov 2009;53(11):4580-7. doi:10.1128/aac.00346-09
Hiramatsu K. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. The American journal of medicine. 1998;104(5):7S-10S.
Belete MA, Gedefie A, Alemayehu E, et al. The prevalence of vancomycin-resistant Staphylococcus aureus in Ethiopia: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control. 2023/08/30 2023;12(1):86. doi:10.1186/s13756-023-01291-3
Saadat S, Solhjoo K, Norooz-Nejad M-J, Kazemi A. VanA and vanB positive vancomycin-resistant Staphylococcus aureus among clinical isolates in Shiraz, South of Iran. Oman medical journal. 2014;29(5):335.
basil AbdulRazzaq A, Shami AM, Ghaima KK. Detection of vanA and vanB genes Among Vancomycin Resistant Staphylococcus aureus Isolated from Clinical Samples in Baghdad Hospitals. Iraqi journal of biotechnology. 2022;21(1)
Rasheed NA, Hussein NR. Prevalence of Nasal Carriage Rate and Antimicrobial Susceptibility Testing of Staphylococcus aureus Strains Isolated From Syrian Students in Kurdistan, Iraq. Middle East Journal of Rehabilitation and Health Studies. 2020;7(3):e103394.
Saderi H, Emadi B, Owlia P. Phenotypic and genotypic study of macrolide, lincosamide and streptogramin B (MLSB) resistance in clinical isolates of Staphylococcus aureus in Tehran, Iran. Medical science monitor: international medical journal of experimental and clinical research. 2011;17(2):BR48.
Zeki C, Murat K, Osman A. Prevalence and Antimicrobial-Resistance of Staphylococcus aureus Isolated from Blood Culture in University Hospital, Turkey. Glob J Infect Dis Clin Res 1 (1): 010-013. DOI: 10.17352/2455-5363.000003 010 Abstract Introduction: In this study, our aim was to detect the prevalence and antibiotic resistance of Staphylococcus aureus, isolated from blood culture in Kafkas University Hospital, Kars, Turkey retrospectively and to present the first data from this university hospital. Materials and Methods: Total. 2015;1456
Cetin ES, Gunes H, Kaya S, Aridogan BC, Demirci M. Macrolide–lincosamide–streptogramin B resistance phenotypes in clinical staphylococcal isolates. International journal of antimicrobial agents. 2008;31(4):364-368.
Akpaka PE, Roberts R, Monecke S. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. Journal of Infection and Public Health. 2017/05/01/ 2017;10(3):316-323. doi:https://doi.org/10.1016/j.jiph.2016.05.010
Mezghani Maalej S, Malbruny B, Leclercq R, Hammami A. Emergence of Staphylococcus aureus strains resistant to pristinamycin in Sfax (Tunisia). Pathologie Biologie. 2012/12/01/ 2012;60(6):e71-e74. doi:https://doi.org/10.1016/j.patbio.2011.10.012
Otsuka T, Zaraket H, Takano T, et al. Macrolide–lincosamide–streptogramin B resistance phenotypes and genotypes among Staphylococcus aureus clinical isolates in Japan. Clinical microbiology and infection. 2007;13(3):325-327.
Uzun B, Güngör S, Pektaş B, et al. [Macrolide-lincosamide-streptogramin B (MLSB) resistance phenotypes in clinical Staphylococcus isolates and investigation of telithromycin activity]. Mikrobiyol Bul. Jul 2014;48(3):469-76. Klinik stafilokok izolatlarında makrolid-linkozamid-streptogramin B (MLSB) direnç fenotipleri ve telitromisin etkinliğinin araştırılması. doi:10.5578/mb.7748
Vallianou N, Evangelopoulos A, Hadjisoteriou M, Avlami A, Petrikkos G. Prevalence of macrolide, lincosamide, and streptogramin resistance among staphylococci in a tertiary care hospital in Athens, Greece. Journal of Chemotherapy. 2015;27(6):319-323.
Petrikkos G, Vallianou N, Evangelopoulos A, et al. Prevalence of macrolide resistance genes among staphylococci in Cyprus. Journal of chemotherapy. 2006;18(5):480-484.
Petinaki E, Papagiannitsis C. Resistance of staphylococci to macrolides-Lincosamides-Streptogramins b (MLS. Staphylococcus aureus. 2019;117:117-133.
SA HH, Al-Amara SSM, Shani WS. Frequencies of inducible clindamycin resistance in methicillin-re-sistant Staphylococcus aureus (MRSA) isolates from tonsillitis in Al-Basrah governorate, Iraq. Appl Biochem Microbiol. 2023;59(S1):235-240.
Mohammed LS, Flayyih MT. (Macrolides–Lincosamides-Streptogramins) and Vancomycin Resistance Phenotypes of Staphylococcus aureus Isolated From Clinical Samples by Using Vitek 2 Compact System. Iraqi Journal of Science. 2017:403-407.
Schmitz F-J, Krey A, Sadurski R, Verhoef J, Milatovic D, Fluit AC. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. Journal of antimicrobial chemotherapy. 2001;47(2):239-240.
Trzcinski K, Cooper BS, Hryniewicz W, Dowson CG. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy. 2000;45(6):763-770.
Markley JL, Wencewicz TA. Tetracycline-inactivating enzymes. Frontiers in microbiology. 2018;9:370057.
Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes. Chem Biol. Jul 23 2015;22(7):888-97. doi:10.1016/j.chembiol.2015.05.017
Grossman TH. Tetracycline Antibiotics and Resistance. Cold Spring Harb Perspect Med. Apr 1 2016;6(4):a025387. doi:10.1101/cshperspect.a025387
Mendes RE, Farrell DJ, Sader HS, Streit JM, Jones RN. Update of the telavancin activity in vitro tested against a worldwide collection of Gram-positive clinical isolates (2013), when applying the revised susceptibility testing method. Diagnostic Microbiology and Infectious Disease. 2015;81(4):275-279.
Hatem ZA, Al-Dulaimi AAF, Al-Taai HRR. Prevalence of tetracycline resistance genes in Staphylococcus aureus isolated from different clinical sources in Diyala, Iraq.
Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. Journal of bacteriology. 1990;172(12):6942-6949.
Tanaka M, Wang T, Onodera Y, Uchida Y, Sato K. Mechanism of quinolone resistance in Staphylococcus aureus. J Infect Chemother. Sep 2000;6(3):131-9. doi:10.1007/s101560070010
Tanaka M, Wang T, Onodera Y, Uchida Y, Sato K. Mechanism of quinolone resistance in Staphylococcus aureus. Journal of Infection and Chemotherapy. 2000;6:131-139.
Tanaka M, Zhang Y, Ishida H, Akasaka T, Sato K, Hayakawa I. Mechanisms of 4-quinolone resistance in quinolone-resistant and methicillin-resistant Staphylococcus aureus isolates from Japan and China. Journal of medical microbiology. 1995;42(3):214-219.
Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273. doi:10.1155/2012/976273
Aypak C, Altunsoy A, Düzgün N. Empiric antibiotic therapy in acute uncomplicated urinary tract infections and fluoroquinolone resistance: a prospective observational study. Annals of clinical microbiology and antimicrobials. 2009;8:1-7.
Zhanel GG, DeCorby M, Laing N, et al. Antimicrobial-resistant pathogens in intensive care units in Canada: results of the Canadian National Intensive Care Unit (CAN-ICU) study, 2005-2006. Antimicrobial agents and chemotherapy. 2008;52(4):1430-1437.
Al-Marjani MF, Kadhim KA, Kadhim AA, Kinani A. Ciprofloxacin resistance in Staphylococcus aureus and Pseudomonas aeruginosa isolated from patients in Baghdad. Int J Pharm Sci Res. 2015;6(2):382-385.
Atta SE, Ghannawi L, Shakir OY, Gharab KM. Molecular Investigation of gyrA Mutations in Clinical Isolates of Methicillin-Resistant Staphylococcus aureus Derived from Diverse Sources. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ). 11/03 2023;5(1S):S64-70. doi:10.54133/ajms.v5i1S.282
Published
How to Cite
License
Copyright (c) 2024 Nawfal R. Hussein, Masood Ahmed Hameed, Qusay Nawaf Resho
This work is licensed under a Creative Commons Attribution 4.0 International License.
BioMed Target Journal is licensed under a Creative Commons Attribution License 4.0 (CC BY-4.0).