Efficient Machine Learning and Deep Learning Techniques for Detection of Breast Cancer Tumor
DOI:
https://doi.org/10.59786/bmtj.211Keywords:
Breast tumor, Machine learning, Deep learning, DiagnosisAbstract
The detection of cancer tumors is an essential component that has important consequences for the speedy involvement of medical professionals and the enhancement of patient outcomes. This review paper presents a complete study of the current body of research and methodology, as well as an in-depth assessment of the use of machine learning (ML) and deep learning (DL) in the detection of cancer tumors. In addition, the article gives a full analysis of the approaches involved. Machine learning and deep learning, which effectively handle ambiguity in the identification of malignant tumors, provide an alternative method for dealing with the complexity of brain tissue. This method is offered by a combination of machine learning and deep learning. The first part of the review draws attention to the significance of making an accurate diagnosis of breast cancer, highlights the limits of traditional diagnostic methods, and investigates the cutting-edge area of medical imaging technology. After that, it investigates the fundamentals of ML and DL and how they might be used to deal with the challenges that are inherent in the interpretation of complicated imaging data. In addition, the paper explores the ways in which models enhance the processes of feature extraction, picture segmentation, and classification in breast tumor detection systems.
Downloads
References
Ahmad S, Ur Rehman S, Iqbal A, Farooq RK, Shahid A, Ullah MI. Breast Cancer Research in Pakistan: A Bibliometric Analysis. SAGE Open. 2021;11(3)doi:10.1177/21582440211046934
Aljuaid H, Alturki N, Alsubaie N, Cavallaro L, Liotta A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput Methods Programs Biomed. Aug 2022;223:106951. doi:10.1016/j.cmpb.2022.106951
Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H. A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique. IEEE Access. 2021;9:71194-71209. doi:10.1109/access.2021.3079204
Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans Biomed Eng. Jul 2016;63(7):1455-62. doi:10.1109/TBME.2015.2496264
Sechopoulos I, Teuwen J, Mann R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Semin Cancer Biol. Jul 2021;72:214-225. doi:10.1016/j.semcancer.2020.06.002
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. Dec 12 2017;318(22):2199-2210. doi:10.1001/jama.2017.14585
Zeeshan M, Salam B, Khalid QSB, Alam S, Sayani R. Diagnostic Accuracy of Digital Mammography in the Detection of Breast Cancer. Cureus. Apr 8 2018;10(4):e2448. doi:10.7759/cureus.2448
Shahidi F, Mohd Daud S, Abas H, Ahmad NA, Maarop N. Breast Cancer Classification Using Deep Learning Approaches and Histopathology Image: A Comparison Study. IEEE Access. 2020;8:187531-187552. doi:10.1109/access.2020.3029881
Aristokli N, Polycarpou I, Themistocleous SC, Sophocleous D, Mamais I. Comparison of the diagnostic performance of Magnetic Resonance Imaging (MRI), ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient's history: A review. Radiography (Lond). Aug 2022;28(3):848-856. doi:10.1016/j.radi.2022.01.006
Salama WM, Elbagoury AM, Aly MH. Novel breast cancer classification framework based on deep learning. IET Image Processing. 2020;14(13):3254-3259. doi:10.1049/iet-ipr.2020.0122
Motlagh MH, Jannesari M, Aboulkheyr H, et al. 2018;doi:10.1101/242818
Ragab DA, Sharkas M, Marshall S, Ren J. Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ. 2019;7:e6201. doi:10.7717/peerj.6201
Sharma S, Mehra R. Conventional Machine Learning and Deep Learning Approach for Multi-Classification of Breast Cancer Histopathology Images-a Comparative Insight. J Digit Imaging. Jun 2020;33(3):632-654. doi:10.1007/s10278-019-00307-y
Araujo T, Aresta G, Castro E, et al. Classification of breast cancer histology images using Convolutional Neural Networks. PLoS One. 2017;12(6):e0177544. doi:10.1371/journal.pone.0177544
Ragab DA, Attallah O, Sharkas M, Ren J, Marshall S. A framework for breast cancer classification using Multi-DCNNs. Comput Biol Med. Apr 2021;131:104245. doi:10.1016/j.compbiomed.2021.104245
Hameed Z, Zahia S, Garcia-Zapirain B, Javier Aguirre J, Maria Vanegas A. Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models. Sensors (Basel). Aug 5 2020;20(16)doi:10.3390/s20164373
Zewdie ET, Tessema AW, Simegn GL. Classification of breast cancer types, sub-types and grade from histopathological images using deep learning technique. Health and Technology. 2021;11(6):1277-1290. doi:10.1007/s12553-021-00592-0
Roy SD, Das S, Kar D, Schwenker F, Sarkar R. Computer Aided Breast Cancer Detection Using Ensembling of Texture and Statistical Image Features. Sensors (Basel). May 23 2021;21(11)doi:10.3390/s21113628
Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief. Feb 2020;28:104863. doi:10.1016/j.dib.2019.104863
Hirra I, Ahmad M, Hussain A, et al. Breast Cancer Classification From Histopathological Images Using Patch-Based Deep Learning Modeling. IEEE Access. 2021;9:24273-24287. doi:10.1109/access.2021.3056516
Khan S, Islam N, Jan Z, Ud Din I, Rodrigues JJPC. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognition Letters. 2019;125:1-6. doi:10.1016/j.patrec.2019.03.022
Zaalouk AM, Ebrahim GA, Mohamed HK, Hassan HM, Zaalouk MMA. A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer. Bioengineering (Basel). Aug 15 2022;9(8)doi:10.3390/bioengineering9080391
Zhang H, Han L, Chen K, Peng Y, Lin J. Diagnostic Efficiency of the Breast Ultrasound Computer-Aided Prediction Model Based on Convolutional Neural Network in Breast Cancer. J Digit Imaging. Oct 2020;33(5):1218-1223. doi:10.1007/s10278-020-00357-7
Ragab M, Albukhari A, Alyami J, Mansour RF. Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification on Ultrasound Images. Biology (Basel). Mar 14 2022;11(3)doi:10.3390/biology11030439
Jabeen K, Khan MA, Alhaisoni M, et al. Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion. Sensors (Basel). Jan 21 2022;22(3)doi:10.3390/s22030807
Nikolaos Papandrianos EP, Athanasios Anagnostis, andAnna Feleki . 2020;doi:10.3390/app10030997
Zahoor S, Shoaib U, Lali IU. Breast Cancer Mammograms Classification Using Deep Neural Network and Entropy-Controlled Whale Optimization Algorithm. Diagnostics (Basel). Feb 21 2022;12(2)doi:10.3390/diagnostics12020557
Lin Y, Zhang W, Cao H, Li G, Du W. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data. Genes (Basel). Aug 4 2020;11(8)doi:10.3390/genes11080888
Mobark N, Hamad S, Rida SZ. CoroNet: Deep Neural Network-Based End-to-End Training for Breast Cancer Diagnosis. Applied Sciences. 2022;12(14)doi:10.3390/app12147080
Jader R, Aminifar S, Ejbali R. Predictive Model for Diagnosis of Gestational Diabetes in the Kurdistan Region by a Combination of Clustering and Classification Algorithms: An Ensemble Approach. Applied Computational Intelligence and Soft Computing. 2022;2022:1-11. doi:10.1155/2022/9749579
Rasool J, Sadegh A. An Intelligent Gestational Diabetes Mellitus Recognition System Using Machine Learning Algorithms. Tikrit Journal of Pure Science. 2023;28(1):82-88. doi:10.25130/tjps.v28i1.1269
Dou Y, Meng W. An Optimization Algorithm for Computer-Aided Diagnosis of Breast Cancer Based on Support Vector Machine. Front Bioeng Biotechnol. 2021;9:698390. doi:10.3389/fbioe.2021.698390
Rashid TA, Majidpour J, Thinakaran R, et al. NSGA-II-DL: Metaheuristic Optimal Feature Selection With Deep Learning Framework for HER2 Classification in Breast Cancer. IEEE Access. 2024;12:38885-38898. doi:10.1109/access.2024.3374890
Thwin SM, Malebary SJ, Abulfaraj AW, Park H-S. Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks. Technologies. 2024;12(2)doi:10.3390/technologies12020016
Humayun M, Khalil MI, Almuayqil SN, Jhanjhi NZ. Framework for Detecting Breast Cancer Risk Presence Using Deep Learning. Electronics. 2023;12(2)doi:10.3390/electronics12020403
Mirimoghaddam MM, Majidpour J, Pashaei F, et al. HER2GAN: Overcome the Scarcity of HER2 Breast Cancer Dataset Based on Transfer Learning and GAN Model. Clin Breast Cancer. Jan 2024;24(1):53-64. doi:10.1016/j.clbc.2023.09.014
Shi J, Vakanski A, Xian M, Ding J, Ning C. Emt-Net: Efficient Multitask Network for Computer-Aided Diagnosis of Breast Cancer. Proc IEEE Int Symp Biomed Imaging. Mar 2022;2022doi:10.1109/isbi52829.2022.9761438
Magnuska ZA, Theek B, Darguzyte M, et al. Influence of the Computer-Aided Decision Support System Design on Ultrasound-Based Breast Cancer Classification. Cancers (Basel). Jan 6 2022;14(2)doi:10.3390/cancers14020277
Prinzi F, Insalaco M, Orlando A, Gaglio S, Vitabile S. A Yolo-Based Model for Breast Cancer Detection in Mammograms. Cognitive Computation. 2023;16(1):107-120. doi:10.1007/s12559-023-10189-6
Zhang B, Vakanski A, Xian M. BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images With Semantic and Quantitative Explanations. IEEE Access. 2023;11:79480-79494. doi:10.1109/access.2023.3298569
Downloads
Published
How to Cite
License
Copyright (c) 2024 Dlshad Abdalrahman Mahmood, Sadegh Abdullah Aminfar
This work is licensed under a Creative Commons Attribution 4.0 International License.
BioMed Target Journal is licensed under a Creative Commons Attribution License 4.0 (CC BY-4.0).