Efficient Machine Learning and Deep Learning Techniques for Detection of Breast Cancer Tumor

Authors

DOI:

https://doi.org/10.59786/bmtj.211

Keywords:

Breast tumor, Machine learning, Deep learning, Diagnosis

Abstract

The detection of cancer tumors is an essential component that has important consequences for the speedy involvement of medical professionals and the enhancement of patient outcomes. This review paper presents a complete study of the current body of research and methodology, as well as an in-depth assessment of the use of machine learning (ML) and deep learning (DL) in the detection of cancer tumors. In addition, the article gives a full analysis of the approaches involved. Machine learning and deep learning, which effectively handle ambiguity in the identification of malignant tumors, provide an alternative method for dealing with the complexity of brain tissue. This method is offered by a combination of machine learning and deep learning. The first part of the review draws attention to the significance of making an accurate diagnosis of breast cancer, highlights the limits of traditional diagnostic methods, and investigates the cutting-edge area of medical imaging technology. After that, it investigates the fundamentals of ML and DL and how they might be used to deal with the challenges that are inherent in the interpretation of complicated imaging data. In addition, the paper explores the ways in which models enhance the processes of feature extraction, picture segmentation, and classification in breast tumor detection systems.

Downloads

Download data is not yet available.

References

Ahmad S, Ur Rehman S, Iqbal A, Farooq RK, Shahid A, Ullah MI. Breast Cancer Research in Pakistan: A Bibliometric Analysis. SAGE Open. 2021;11(3)doi:10.1177/21582440211046934

Aljuaid H, Alturki N, Alsubaie N, Cavallaro L, Liotta A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput Methods Programs Biomed. Aug 2022;223:106951. doi:10.1016/j.cmpb.2022.106951

Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H. A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique. IEEE Access. 2021;9:71194-71209. doi:10.1109/access.2021.3079204

Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans Biomed Eng. Jul 2016;63(7):1455-62. doi:10.1109/TBME.2015.2496264

Sechopoulos I, Teuwen J, Mann R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Semin Cancer Biol. Jul 2021;72:214-225. doi:10.1016/j.semcancer.2020.06.002

Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. Dec 12 2017;318(22):2199-2210. doi:10.1001/jama.2017.14585

Zeeshan M, Salam B, Khalid QSB, Alam S, Sayani R. Diagnostic Accuracy of Digital Mammography in the Detection of Breast Cancer. Cureus. Apr 8 2018;10(4):e2448. doi:10.7759/cureus.2448

Shahidi F, Mohd Daud S, Abas H, Ahmad NA, Maarop N. Breast Cancer Classification Using Deep Learning Approaches and Histopathology Image: A Comparison Study. IEEE Access. 2020;8:187531-187552. doi:10.1109/access.2020.3029881

Aristokli N, Polycarpou I, Themistocleous SC, Sophocleous D, Mamais I. Comparison of the diagnostic performance of Magnetic Resonance Imaging (MRI), ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient's history: A review. Radiography (Lond). Aug 2022;28(3):848-856. doi:10.1016/j.radi.2022.01.006

Salama WM, Elbagoury AM, Aly MH. Novel breast cancer classification framework based on deep learning. IET Image Processing. 2020;14(13):3254-3259. doi:10.1049/iet-ipr.2020.0122

Motlagh MH, Jannesari M, Aboulkheyr H, et al. 2018;doi:10.1101/242818

Ragab DA, Sharkas M, Marshall S, Ren J. Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ. 2019;7:e6201. doi:10.7717/peerj.6201

Sharma S, Mehra R. Conventional Machine Learning and Deep Learning Approach for Multi-Classification of Breast Cancer Histopathology Images-a Comparative Insight. J Digit Imaging. Jun 2020;33(3):632-654. doi:10.1007/s10278-019-00307-y

Araujo T, Aresta G, Castro E, et al. Classification of breast cancer histology images using Convolutional Neural Networks. PLoS One. 2017;12(6):e0177544. doi:10.1371/journal.pone.0177544

Ragab DA, Attallah O, Sharkas M, Ren J, Marshall S. A framework for breast cancer classification using Multi-DCNNs. Comput Biol Med. Apr 2021;131:104245. doi:10.1016/j.compbiomed.2021.104245

Hameed Z, Zahia S, Garcia-Zapirain B, Javier Aguirre J, Maria Vanegas A. Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models. Sensors (Basel). Aug 5 2020;20(16)doi:10.3390/s20164373

Zewdie ET, Tessema AW, Simegn GL. Classification of breast cancer types, sub-types and grade from histopathological images using deep learning technique. Health and Technology. 2021;11(6):1277-1290. doi:10.1007/s12553-021-00592-0

Roy SD, Das S, Kar D, Schwenker F, Sarkar R. Computer Aided Breast Cancer Detection Using Ensembling of Texture and Statistical Image Features. Sensors (Basel). May 23 2021;21(11)doi:10.3390/s21113628

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief. Feb 2020;28:104863. doi:10.1016/j.dib.2019.104863

Hirra I, Ahmad M, Hussain A, et al. Breast Cancer Classification From Histopathological Images Using Patch-Based Deep Learning Modeling. IEEE Access. 2021;9:24273-24287. doi:10.1109/access.2021.3056516

Khan S, Islam N, Jan Z, Ud Din I, Rodrigues JJPC. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognition Letters. 2019;125:1-6. doi:10.1016/j.patrec.2019.03.022

Zaalouk AM, Ebrahim GA, Mohamed HK, Hassan HM, Zaalouk MMA. A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer. Bioengineering (Basel). Aug 15 2022;9(8)doi:10.3390/bioengineering9080391

Zhang H, Han L, Chen K, Peng Y, Lin J. Diagnostic Efficiency of the Breast Ultrasound Computer-Aided Prediction Model Based on Convolutional Neural Network in Breast Cancer. J Digit Imaging. Oct 2020;33(5):1218-1223. doi:10.1007/s10278-020-00357-7

Ragab M, Albukhari A, Alyami J, Mansour RF. Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification on Ultrasound Images. Biology (Basel). Mar 14 2022;11(3)doi:10.3390/biology11030439

Jabeen K, Khan MA, Alhaisoni M, et al. Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion. Sensors (Basel). Jan 21 2022;22(3)doi:10.3390/s22030807

Nikolaos Papandrianos EP, Athanasios Anagnostis, andAnna Feleki . 2020;doi:10.3390/app10030997

Zahoor S, Shoaib U, Lali IU. Breast Cancer Mammograms Classification Using Deep Neural Network and Entropy-Controlled Whale Optimization Algorithm. Diagnostics (Basel). Feb 21 2022;12(2)doi:10.3390/diagnostics12020557

Lin Y, Zhang W, Cao H, Li G, Du W. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data. Genes (Basel). Aug 4 2020;11(8)doi:10.3390/genes11080888

Mobark N, Hamad S, Rida SZ. CoroNet: Deep Neural Network-Based End-to-End Training for Breast Cancer Diagnosis. Applied Sciences. 2022;12(14)doi:10.3390/app12147080

Jader R, Aminifar S, Ejbali R. Predictive Model for Diagnosis of Gestational Diabetes in the Kurdistan Region by a Combination of Clustering and Classification Algorithms: An Ensemble Approach. Applied Computational Intelligence and Soft Computing. 2022;2022:1-11. doi:10.1155/2022/9749579

Rasool J, Sadegh A. An Intelligent Gestational Diabetes Mellitus Recognition System Using Machine Learning Algorithms. Tikrit Journal of Pure Science. 2023;28(1):82-88. doi:10.25130/tjps.v28i1.1269

Dou Y, Meng W. An Optimization Algorithm for Computer-Aided Diagnosis of Breast Cancer Based on Support Vector Machine. Front Bioeng Biotechnol. 2021;9:698390. doi:10.3389/fbioe.2021.698390

Rashid TA, Majidpour J, Thinakaran R, et al. NSGA-II-DL: Metaheuristic Optimal Feature Selection With Deep Learning Framework for HER2 Classification in Breast Cancer. IEEE Access. 2024;12:38885-38898. doi:10.1109/access.2024.3374890

Thwin SM, Malebary SJ, Abulfaraj AW, Park H-S. Attention-Based Ensemble Network for Effective Breast Cancer Classification over Benchmarks. Technologies. 2024;12(2)doi:10.3390/technologies12020016

Humayun M, Khalil MI, Almuayqil SN, Jhanjhi NZ. Framework for Detecting Breast Cancer Risk Presence Using Deep Learning. Electronics. 2023;12(2)doi:10.3390/electronics12020403

Mirimoghaddam MM, Majidpour J, Pashaei F, et al. HER2GAN: Overcome the Scarcity of HER2 Breast Cancer Dataset Based on Transfer Learning and GAN Model. Clin Breast Cancer. Jan 2024;24(1):53-64. doi:10.1016/j.clbc.2023.09.014

Shi J, Vakanski A, Xian M, Ding J, Ning C. Emt-Net: Efficient Multitask Network for Computer-Aided Diagnosis of Breast Cancer. Proc IEEE Int Symp Biomed Imaging. Mar 2022;2022doi:10.1109/isbi52829.2022.9761438

Magnuska ZA, Theek B, Darguzyte M, et al. Influence of the Computer-Aided Decision Support System Design on Ultrasound-Based Breast Cancer Classification. Cancers (Basel). Jan 6 2022;14(2)doi:10.3390/cancers14020277

Prinzi F, Insalaco M, Orlando A, Gaglio S, Vitabile S. A Yolo-Based Model for Breast Cancer Detection in Mammograms. Cognitive Computation. 2023;16(1):107-120. doi:10.1007/s12559-023-10189-6

Zhang B, Vakanski A, Xian M. BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images With Semantic and Quantitative Explanations. IEEE Access. 2023;11:79480-79494. doi:10.1109/access.2023.3298569

Downloads

Published

2024-05-03

How to Cite

Mahmood, D. A., and S. A. Aminfar. “Efficient Machine Learning and Deep Learning Techniques for Detection of Breast Cancer Tumor”. BioMed Target Journal, vol. 2, no. 1, May 2024, pp. 1-13, doi:10.59786/bmtj.211.