Unleashing the Power of OpenAI in Shaping the Future of Cancer Research

Authors

DOI:

https://doi.org/10.59786/bmtj.112

Keywords:

OpenAI, Cancer Research

Abstract

Artificial intelligence (AI) is rapidly changing cancer research and treatment development. OpenAI, a pioneer in AI research, is at the vanguard of this revolution. This review article highlights the potential of OpenAI to shape the future of cancer research, including the identification of new therapeutic targets, predictive modeling for cancer progression and response to therapy, the development of personalized treatment plans, and advancements in drug discovery and development. The article also discusses the challenges of implementing OpenAI in cancer research and incorporating AI into the research process. Finally, the article concludes with a discussion of AI's future prospects in cancer research, as well as future research recommendations.

Downloads

Download data is not yet available.

Author Biography

Bawar Mohammed Faraj, Computer Science Department, College of Science, University of Halabja, Halabja, 46018, Iraq

Bawar Mohammed Farajis an assistant lecturer holding an MSc. in Applied Mathematics at the Computer science department, College of Science, University of Ha-labja, Halabja, 46018, Iraq

References

Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. Apr 2021;11(4):900-915. doi:10.1158/2159-8290.CD-21-0090

Sebastian AM, Peter D. Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions. Life (Basel). Nov 28 2022;12(12)doi:10.3390/life12121991

Gawehn E, Hiss JA, Schneider G. Deep Learning in Drug Discovery. Molecular informatics. Jan 2016;35(1):3-14. doi:10.1002/minf.201501008

Szegedy C, Wei L, Yangqing J, et al. Going deeper with convolutions. 2015:1-9.

Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics. 2021/09/15 2021;22(1):122. doi:10.1186/s12910-021-00687-3

Johnson KB, Wei WQ, Weeraratne D, et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clinical and translational science. Jan 2021;14(1):86-93. doi:10.1111/cts.12884

Schork NJ. Artificial Intelligence and Personalized Medicine. Cancer treatment and research. 2019;178:265-283. doi:10.1007/978-3-030-16391-4_11

Sarkar C, Das B, Rawat VS, et al. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. International Journal of Molecular Sciences. 2023;24(3):2026.

Koh DM, Papanikolaou N, Bick U, et al. Artificial intelligence and machine learning in cancer imaging. Commun Med (Lond). 2022;2:133. doi:10.1038/s43856-022-00199-0

Kumar Y, Gupta S, Singla R, Hu YC. A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis. Arch Comput Methods Eng. 2022;29(4):2043-2070. doi:10.1007/s11831-021-09648-w

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. Aug 2018;18(8):500-510. doi:10.1038/s41568-018-0016-5

Lee LIT, Kanthasamy S, Ayyalaraju RS, Ganatra R. The Current State of Artificial Intelligence in Medical Imaging and Nuclear Medicine. BJR open. 2019;1(1):20190037. doi:10.1259/bjro.20190037

Jungwirth D, Haluza D. Artificial Intelligence and Public Health: An Exploratory Study. International Journal of Environmental Research and Public Health. 2023;20(5):4541.

Liu Z, Roberts RA, Lal-Nag M, Chen X, Huang R, Tong W. AI-based language models powering drug discovery and development. Drug discovery today. 2021/11/01/ 2021;26(11):2593-2607. doi:https://doi.org/10.1016/j.drudis.2021.06.009

Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017;318(22):2199-2210. doi:10.1001/jama.2017.14585

Sebastian AM, Peter D. Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions. Life. 2022;12(12):1991.

Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nature Medicine. 2019/01/01 2019;25(1):24-29. doi:10.1038/s41591-018-0316-z

Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nature Medicine. 2022/09/01 2022;28(9):1773-1784. doi:10.1038/s41591-022-01981-2

Dolsten M, Søgaard M. Precision medicine: an approach to R&D for delivering superior medicines to patients. Clin Transl Med. May 30 2012;1(1):7. doi:10.1186/2001-1326-1-7

Al-Antari MA. Artificial Intelligence for Medical Diagnostics—Existing and Future AI Technology! Diagnostics. 2023;13(4):688.

Rösler W, Altenbuchinger M, Baeßler B, et al. An overview and a roadmap for artificial intelligence in hematology and oncology. Journal of Cancer Research and Clinical Oncology. 2023/03/15 2023;doi:10.1007/s00432-023-04667-5

Albahra S, Gorbett T, Robertson S, et al. Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review of data preprocessing and basic supervised concepts. Seminars in Diagnostic Pathology. 2023/03/01/ 2023;40(2):71-87. doi:https://doi.org/10.1053/j.semdp.2023.02.002

Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future healthcare journal. Jun 2019;6(2):94-98. doi:10.7861/futurehosp.6-2-94

Bittner MI, Farajnia S. AI in drug discovery: Applications, opportunities, and challenges. Patterns (New York, NY). Jun 10 2022;3(6):100529. doi:10.1016/j.patter.2022.100529

Wang L, Song Y, Wang H, et al. Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade. Pharmaceuticals. 2023;16(2):253.

Kifle ZD, Tadele M, Alemu E, Gedamu T, Ayele AG. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE open medicine. 2021;9:20503121211067083. doi:10.1177/20503121211067083

Caudai C, Galizia A, Geraci F, et al. AI applications in functional genomics. Comput Struct Biotechnol J. 2021;19:5762-5790. doi:10.1016/j.csbj.2021.10.009

Habibi M, Taheri G. A new machine learning method for cancer mutation analysis. PLoS computational biology. Oct 2022;18(10):e1010332. doi:10.1371/journal.pcbi.1010332

You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted Therapy. 2022/05/10 2022;7(1):156. doi:10.1038/s41392-022-00994-0

Liu Z, Roberts RA, Lal-Nag M, Chen X, Huang R, Tong W. AI-based language models powering drug discovery and development. Drug discovery today. Nov 2021;26(11):2593-2607. doi:10.1016/j.drudis.2021.06.009

Ando K, Hu Q, Kasagi Y, Oki E, Mori M. Recent developments in cancer research: Expectations for a new remedy. Ann Gastroenterol Surg. Jul 2021;5(4):419-426. doi:10.1002/ags3.12440

Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface. 2018;15(141):20170387. doi:doi:10.1098/rsif.2017.0387

Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput Struct Biotechnol J. 2021;19:5546-5555. doi:10.1016/j.csbj.2021.10.006

Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer informatics. Feb 11 2007;2:59-77.

Rafique R, Islam SMR, Kazi JU. Machine learning in the prediction of cancer therapy. Computational and Structural Biotechnology Journal. 2021/01/01/ 2021;19:4003-4017. doi:https://doi.org/10.1016/j.csbj.2021.07.003

Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Medicine. 2021/09/27 2021;13(1):152. doi:10.1186/s13073-021-00968-x

Zeng L, Liu L, Chen D, et al. The innovative model based on artificial intelligence algorithms to predict recurrence risk of patients with postoperative breast cancer. Front Oncol. 2023;13:1117420. doi:10.3389/fonc.2023.1117420

Jungwirth D, Haluza D. Artificial Intelligence and Public Health: An Exploratory Study. Int J Environ Res Public Health. Mar 3 2023;20(5)doi:10.3390/ijerph20054541

Johnson SB, King AJ, Warner EL, Aneja S, Kann BH, Bylund CL. Using ChatGPT to evaluate cancer myths and misconceptions: artificial intelligence and cancer information. JNCI Cancer Spectr. Mar 1 2023;7(2)doi:10.1093/jncics/pkad015

Farina E, Nabhen JJ, Dacoregio MI, Batalini F, Moraes FY. An overview of artificial intelligence in oncology. Future science OA. Apr 2022;8(4):Fso787. doi:10.2144/fsoa-2021-0074

Jacob T. Shreve M, Sadia A. Khanani M, Tufia C. Haddad M. Artificial Intelligence in Oncology: Current Capabilities, Future Opportunities, and Ethical Considerations. American Society of Clinical Oncology Educational Book. 2022;(42):842-851. doi:10.1200/edbk_350652

Shao D, Dai Y, Li N, et al. Artificial intelligence in clinical research of cancers. Briefings in Bioinformatics. 2021;23(1)doi:10.1093/bib/bbab523

Lin B, Tan Z, Mo Y, Yang X, Liu Y, Xu B. Intelligent oncology: The convergence of artificial intelligence and oncology. Journal of the National Cancer Center. 2023/03/01/ 2023;3(1):83-91. doi:https://doi.org/10.1016/j.jncc.2022.11.004

Cabral BP, Braga LAM, Syed-Abdul S, Mota FB. Future of Artificial Intelligence Applications in Cancer Care: A Global Cross-Sectional Survey of Researchers. Current Oncology. 2023;30(3):3432-3446.

Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. May 2020;111(5):1452-1460. doi:10.1111/cas.14377

Chen M, Decary M. Artificial intelligence in healthcare: An essential guide for health leaders. Healthcare Management Forum. 2020;33(1):10-18. doi:10.1177/0840470419873123

Liao J, Li X, Gan Y, et al. Artificial intelligence assists precision medicine in cancer treatment. Front Oncol. 2022;12:998222. doi:10.3389/fonc.2022.998222

Shao D, Dai Y, Li N, et al. Artificial intelligence in clinical research of cancers. Brief Bioinform. Jan 17 2022;23(1)doi:10.1093/bib/bbab523

Ren F, Ding X, Zheng M, et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chemical Science. 2023;14(6):1443-1452. doi:10.1039/D2SC05709C

Haluza D, Jungwirth D. Artificial Intelligence and Ten Societal Megatrends: An Exploratory Study Using GPT-3. Systems. 2023;11(3):120.

Gambardella V, Tarazona N, Cejalvo JM, et al. Personalized Medicine: Recent Progress in Cancer Therapy. Cancers (Basel). Apr 19 2020;12(4)doi:10.3390/cancers12041009

Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertility and sterility. Jun 2018;109(6):952-963. doi:10.1016/j.fertnstert.2018.05.006

Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. Jun 6 2017;8(23):38022-38043. doi:10.18632/oncotarget.16723

Koh D-M, Papanikolaou N, Bick U, et al. Artificial intelligence and machine learning in cancer imaging. Communications Medicine. 2022/10/27 2022;2(1):133. doi:10.1038/s43856-022-00199-0

Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Progress in molecular biology and translational science. 2022;190(1):57-100. doi:10.1016/bs.pmbts.2022.03.002

Malebary SJ, Khan YD. Evaluating machine learning methodologies for identification of cancer driver genes. Scientific Reports. 2021/06/10 2021;11(1):12281. doi:10.1038/s41598-021-91656-8

Nguyen L, Van Hoeck A, Cuppen E. Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features. Nature Communications. 2022/07/11 2022;13(1):4013. doi:10.1038/s41467-022-31666-w

Dlamini Z, Skepu A, Kim N, et al. AI and precision oncology in clinical cancer genomics: From prevention to targeted cancer therapies-an outcomes based patient care. Informatics in Medicine Unlocked. 2022/01/01/ 2022;31:100965. doi:https://doi.org/10.1016/j.imu.2022.100965

Habehh H, Gohel S. Machine Learning in Healthcare. Current genomics. Dec 16 2021;22(4):291-300. doi:10.2174/1389202922666210705124359

Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks. 2022/01/01/ 2022;3:58-73. doi:https://doi.org/10.1016/j.ijin.2022.05.002

Grandori C, Kemp CJ. Personalized Cancer Models for Target Discovery and Precision Medicine. Trends in cancer. Sep 2018;4(9):634-642. doi:10.1016/j.trecan.2018.07.005

Karger E, Kureljusic M. Artificial Intelligence for Cancer Detection-A Bibliometric Analysis and Avenues for Future Research. Curr Oncol. Jan 29 2023;30(2):1626-1647. doi:10.3390/curroncol30020125

Torrente M, Sousa PA, Hernández R, et al. An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study. Cancers (Basel). Aug 22 2022;14(16)doi:10.3390/cancers14164041

Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and Structural Biotechnology Journal. 2020/01/01/ 2020;18:2300-2311. doi:https://doi.org/10.1016/j.csbj.2020.08.019

Hoeben A, Joosten EAJ, van den Beuken-van Everdingen MHJ. Personalized Medicine: Recent Progress in Cancer Therapy. Cancers (Basel). Jan 11 2021;13(2)doi:10.3390/cancers13020242

Lin PC, Tsai YS, Yeh YM, Shen MR. Cutting-Edge AI Technologies Meet Precision Medicine to Improve Cancer Care. Biomolecules. Aug 17 2022;12(8)doi:10.3390/biom12081133

Xu W, Huang SH, Su J, Gudi S, O'Sullivan B. Statistical fundamentals on cancer research for clinicians: Working with your statisticians. Clinical and translational radiation oncology. Mar 2021;27:75-84. doi:10.1016/j.ctro.2021.01.006

Nath AS, Pal A, Mukhopadhyay S, Mondal KC. A survey on cancer prediction and detection with data analysis. Innovations in Systems and Software Engineering. 2020/12/01 2020;16(3):231-243. doi:10.1007/s11334-019-00350-6

Jiang P, Sinha S, Aldape K, Hannenhalli S, Sahinalp C, Ruppin E. Big data in basic and translational cancer research. Nature Reviews Cancer. 2022/11/01 2022;22(11):625-639. doi:10.1038/s41568-022-00502-0

Sarker IH. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Computer Science. 2022/02/10 2022;3(2):158. doi:10.1007/s42979-022-01043-x

Holzinger A, Keiblinger K, Holub P, Zatloukal K, Müller H. AI for life: Trends in artificial intelligence for biotechnology. New Biotechnology. 2023/05/25/ 2023;74:16-24. doi:https://doi.org/10.1016/j.nbt.2023.02.001

Dave M, Patel N. Artificial intelligence in healthcare and education. British Dental Journal. 2023/05/01 2023;234(10):761-764. doi:10.1038/s41415-023-5845-2

Farghali H, Kutinová Canová N, Arora M. The potential applications of artificial intelligence in drug discovery and development. Physiological research. Dec 30 2021;70(Suppl4):S715-s722. doi:10.33549/physiolres.934765

Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine Learning in Drug Discovery: A Review. Artificial intelligence review. 2022;55(3):1947-1999. doi:10.1007/s10462-021-10058-4

Patel V, Shah M. Artificial intelligence and machine learning in drug discovery and development. Intelligent Medicine. 2022/08/01/ 2022;2(3):134-140. doi:https://doi.org/10.1016/j.imed.2021.10.001

Gallo C. Artificial Intelligence for Personalized Genetics and New Drug Development: Benefits and Cautions. Bioengineering. 2023;10(5):613.

Sweeney SM, Hamadeh HK, Abrams N, et al. Case Studies for Overcoming Challenges in Using Big Data in Cancer. Cancer research. Apr 14 2023;83(8):1183-1190. doi:10.1158/0008-5472.can-22-1277

Karimi MR, Karimi AH, Abolmaali S, Sadeghi M, Schmitz U. Prospects and challenges of cancer systems medicine: from genes to disease networks. Briefings in bioinformatics. Jan 17 2022;23(1)doi:10.1093/bib/bbab343

Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes & diseases. Sep 2021;8(5):655-661. doi:10.1016/j.gendis.2020.09.002

Belenguer L. AI bias: exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry. AI and Ethics. 2022/11/01 2022;2(4):771-787. doi:10.1007/s43681-022-00138-8

Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation. 2021/11/28/ 2021;2(4):100179. doi:https://doi.org/10.1016/j.xinn.2021.100179

Lee D, Yoon SN. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. International journal of environmental research and public health. Jan 1 2021;18(1)doi:10.3390/ijerph18010271

Santangelo OE, Gentile V, Pizzo S, Giordano D, Cedrone F. Machine Learning and Prediction of Infectious Diseases: A Systematic Review. Machine Learning and Knowledge Extraction. 2023;5(1):175-198.

Weissler EH, Naumann T, Andersson T, et al. The role of machine learning in clinical research: transforming the future of evidence generation. Trials. 2021/08/16 2021;22(1):537. doi:10.1186/s13063-021-05489-x

Perifanis N-A, Kitsios F. Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information. 2023;14(2):85.

Tran TTV, Tayara H, Chong KT. Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives. Pharmaceutics. 2023;15(4):1260.

Undru TR, Uday U, Lakshmi JT, et al. Integrating Artificial Intelligence for Clinical and Laboratory Diagnosis - a Review. Maedica. Jun 2022;17(2):420-426. doi:10.26574/maedica.2022.17.2.420

Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation (Cambridge (Mass)). Nov 28 2021;2(4):100179. doi:10.1016/j.xinn.2021.100179

Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy. 2021;23(1):18.

Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Medical oncology (Northwood, London, England). Jun 15 2022;39(8):120. doi:10.1007/s12032-022-01711-1

Lavin A, Gilligan-Lee CM, Visnjic A, et al. Technology readiness levels for machine learning systems. Nature Communications. 2022/10/20 2022;13(1):6039. doi:10.1038/s41467-022-33128-9

Naik N, Hameed BMZ, Shetty DK, et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Frontiers in surgery. 2022;9:862322. doi:10.3389/fsurg.2022.862322

Akinci D'Antonoli T. Ethical considerations for artificial intelligence: an overview of the current radiology landscape. Diagnostic and interventional radiology (Ankara, Turkey). Sep 2020;26(5):504-511. doi:10.5152/dir.2020.19279

Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020:295-336. doi: 10.1016/B978-0-12-818438-7.00012-5. Epub 2020 Jun 26.

Zhang J, Zhang ZM. Ethics and governance of trustworthy medical artificial intelligence. BMC medical informatics and decision making. Jan 13 2023;23(1):7. doi:10.1186/s12911-023-02103-9

Li F, Ruijs N, Lu Y. Ethics & AI: A Systematic Review on Ethical Concerns and Related Strategies for Designing with AI in Healthcare. AI. 2023;4(1):28-53.

Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA: a cancer journal for clinicians. Mar 2019;69(2):127-157. doi:10.3322/caac.21552

Downloads

Published

2023-06-30

How to Cite

Abdullah, R. M., H. D. I. Masseh, A. Salihi, and B. M. Faraj. “Unleashing the Power of OpenAI in Shaping the Future of Cancer Research”. BioMed Target Journal, vol. 1, no. 1, June 2023, pp. 2-11, doi:10.59786/bmtj.112.