Molecular Mechanisms of Breast Cancer Drug Resistance and CRISPR/Cas9 Strategies to Overcome

Authors

DOI:

https://doi.org/10.59786/bmtj.221

Keywords:

Breast Cancer, Drug Resistance, CRISPR/Cas9

Abstract

The most frequent cancer among women and a significant contributor to mortality is breast cancer. The CRISPR/Cas9 gene-editing tool has promising applications for BC drug resistance, which is a unique and creative approach that has lately attracted attention and can be used to fix multidrug resistance-related gene alterations. Recent research has effectively investigated and targeted particular genes linked to BC treatment resistance using CRISPR/Cas9 gene editing, including those linked to hormone receptor signaling, drug efflux transporters, and DNA repair pathways. The CRISPR/Cas9 technology's selective disruption or mutation of these genes provides valuable information about their role in resistance and paves the path for cutting-edge treatment options. Despite the advantages, there are limitations in the study on CRISPR/Cas9-based gene editing for BC treatment resistance, for example, off-target effects and the improvement of delivery techniques are still major issues. Successful clinical translation depends on methods to improve the specificity and effectiveness of CRISPR/Cas9 editing and to solve these constraints. CRISPR/Cas9 gene editing has the ability to overcome BC treatment resistance by identifying crucial genetic variables and revealing new therapeutic targets. This review aims to explore the possibility of CRISPR/Cas9 gene editing as a cutting-edge method of combating BC medication resistance.

Downloads

Download data is not yet available.

Author Biography

Bashdar Mahmud Hussen, Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, 44001, Iraq Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, 44001, Iraq

 

 

 

References

Woof VG, McWilliams L, Howell A, Evans DG, French DP. How do women at increased risk of breast cancer make sense of their risk? An interpretative phenomenological analysis. British Journal of Health Psychology. 2023;

Cao Y, Li Y, Liu R, Zhou J, Wang K. Preclinical and Basic Research Strategies for Overcoming Resistance to Targeted Therapies in HER2-Positive Breast Cancer. Cancers. 2023;15(9):2568.

Hussen BM, Hidayat HJ, Ghafouri-Fard S. Identification of expression of CCND1-related lncRNAs in breast cancer. Pathology - Research and Practice. 2022/08/01/ 2022;236:154009. doi:https://doi.org/10.1016/j.prp.2022.154009

Ghafouri-Fard S, Sohrabi B, Hussen BM, et al. Down-regulation of MEG3, PANDA and CASC2 as p53-related lncRNAs in breast cancer. Breast Disease. 2022;41:137-143. doi:10.3233/BD-210069

Murad R, Avanes A, Ma X, Geng S, Mortazavi A, Momand J. Transcriptome and chromatin landscape changes associated with trastuzumab resistance in HER2+ breast cancer cells. Gene. 2021/10/05/ 2021;799:145808. doi:https://doi.org/10.1016/j.gene.2021.145808

Mahmood D, Aminfar S. Efficient Machine Learning and Deep Learning Techniques for Detection of Breast Cancer Tumor. BioMed Target Journal. 05/03 2024;2:1-13. doi:10.59786/bmtj.211

Chira S, Nutu A, Isacescu E, et al. Genome editing approaches with CRISPR/Cas9 for cancer treatment: critical appraisal of preclinical and clinical utility, challenges, and future research. Cells. 2022;11(18):2781.

Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy. 2023/01/16 2023;8(1):36. doi:10.1038/s41392-023-01309-7

Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9‐mediated genome editing: From basic research to translational medicine. Journal of cellular and molecular medicine. 2020;24(7):3766-3778.

Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer. 2021;20:1-22.

Kato-Inui T, Takahashi G, Hsu S, Miyaoka Y. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Research. 2018;46(9):4677-4688.

De A, Biswas A. Elucidative PAM/target sequence for CRISPR/Cas-9 activity in breast cancer using a computational approach. International Journal of Innovative Science and Research Technology. 2020;5(7):872-876.

Wan F, Draz M, Gu M, Yu W, Ruan Z, Luo Q. Novel Strategy to Combat Antibiotic Resistance: A Sight into the Combination of CRISPR/Cas9 and Nanoparticles. Pharmaceutics 2021, 13, 352. s Note: MDPI stays neutral with regard to jurisdictional claims in published …; 2021.

Khalaf K, Janowicz K, Dyszkiewicz-Konwińska M, et al. CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes (Basel). Aug 11 2020;11(8)doi:10.3390/genes11080921

Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol. Apr 2019;55:106-119. doi:10.1016/j.semcancer.2018.04.001

Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci. May 2 2020;21(9)doi:10.3390/ijms21093233

Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep. Oct 2020;72(5):1125-1151. doi:10.1007/s43440-020-00138-7

Zhang Y, Showalter AM. CRISPR/Cas9 Genome Editing Technology: A Valuable Tool for Understanding Plant Cell Wall Biosynthesis and Function. Review. Frontiers in Plant Science. 2020-November-20 2020;11(1779)doi:10.3389/fpls.2020.589517

Singh V, Gohil N, Ramírez García R, Braddick D, Fofié CK. Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations. J Cell Biochem. Jan 2018;119(1):81-94. doi:10.1002/jcb.26165

Gaj T, Gersbach CA, Barbas CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul 2013;31(7):397-405. doi:10.1016/j.tibtech.2013.04.004

Asmamaw M, Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics. 2021;15:353-361. doi:10.2147/BTT.S326422

Bodai Z, Bishop AL, Gantz VM, Komor AC. Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nature communications. 2022;13(1):1-15.

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal transduction and targeted therapy. 2020;5(1):1-23.

Hussen BM, Rasul MF, Abdullah SR, et al. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Military Medical Research. 2023/07/17 2023;10(1):32. doi:10.1186/s40779-023-00468-6

Singh V, Gohil N, Ramirez Garcia R, Braddick D, Fofié CK. Recent advances in CRISPR‐Cas9 genome editing technology for biological and biomedical investigations. Journal of cellular biochemistry. 2018;119(1):81-94.

Karimian A, Azizian K, Parsian H, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of cellular physiology. 2019;234(8):12267-12277.

Zhang Y, Showalter AM. CRISPR/Cas9 genome editing technology: a valuable tool for understanding plant cell wall biosynthesis and function. Frontiers in Plant Science. 2020;11:589517.

Khwatenge CN, Nahashon SN. Recent advances in the application of CRISPR/Cas9 gene editing system in poultry species. Frontiers in Genetics. 2021;12:627714.

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71(3):209-249.

Cheung K-L. Treatment strategies and survival outcomes in breast cancer. MDPI; 2020. p. 735.

Nielsen DL, Andersson M, Kamby C. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Cancer treatment reviews. 2009;35(2):121-136.

Catalano A, Iacopetta D, Ceramella J, et al. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules. 2022;27(3):616.

Khan MM, Torchilin VP. Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors. Cancers. 2022;14(17):4123.

Chen J, Yu X, Liu X, Ni J, Yang G, Zhang K. Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. Nanoscale. 2022;

Karthika C, Sureshkumar R, Zehravi M, et al. Multidrug resistance of cancer cells and the vital role of p-glycoprotein. Life. 2022;12(6):897.

Cui Z, Tian R, Huang Z, et al. FrCas9 is a CRISPR/Cas9 system with high editing efficiency and fidelity. Nature communications. 2022;13(1):1-12.

Chu P-Y, Tzeng Y-DT, Tsui K-H, Chu C-Y, Li C-J. Downregulation of ATP binding cassette subfamily a member 10 acts as a prognostic factor associated with immune infiltration in breast cancer. Aging (Albany NY). 2022;14(5):2252.

Feyzizadeh M, Barfar A, Nouri Z, Sarfraz M, Zakeri-Milani P, Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opinion on Drug Discovery. 2022;17(9):1013-1027.

Gote V, Nookala AR, Bolla PK, Pal D. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. International journal of molecular sciences. 2021;22(9):4673.

He J, Fortunati E, Liu D-X, Li Y. Pleiotropic Roles of ABC Transporters in Breast Cancer. Int J Mol Sci. 2021;22(6):3199. doi:10.3390/ijms22063199

Tang P, Wu J, Ma Q, et al. Enrichment of CD44+/CD24+ cells predicts chemoresistance in luminal breast cancer. 2022;

Gameiro M, Silva R, Rocha-Pereira C, et al. Cellular models and in vitro assays for the screening of modulators of P-gp, MRP1 and BCRP. Molecules. 2017;22(4):600.

Oba T, Izumi H, Ito K-I. ABCB1 and ABCC11 confer resistance to eribulin in breast cancer cell lines. Oncotarget. 2016;7(43):70011-70027. doi:10.18632/oncotarget.11727

Liang C, Zhao J, Lu J, et al. Development and characterization of MDR1 (Mdr1a/b) CRISPR/Cas9 knockout rat model. Drug Metabolism and Disposition. 2019;47(2):71-79.

Ha JS, Byun J, Ahn D-R. Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption. Scientific Reports. 2016/03/10 2016;6(1):22847. doi:10.1038/srep22847

Ha JS, Byun J, Ahn DR. Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption. Sci Rep. Mar 10 2016;6:22847. doi:10.1038/srep22847

Norouzi-Barough L, Sarookhani M, Salehi R, Sharifi M, Moghbelinejad S. CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line. Iran J Basic Med Sci. 2018;21(2):181-187. doi:10.22038/IJBMS.2017.25145.6230

Yang Y, Qiu J-G, Li Y, et al. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am J Transl Res. 2016;8(9):3986-3994.

Simoff I, Karlgren M, Backlund M, et al. Complete Knockout of Endogenous Mdr1 (Abcb1) in MDCK Cells by CRISPR-Cas9. Journal of Pharmaceutical Sciences. 2016/02/01/ 2016;105(2):1017-1021. doi:https://doi.org/10.1016/S0022-3549(15)00171-9

Lee J, Kim J, Kang J, Lee HJ. COVID-19 drugs: potential interaction with ATP-binding cassette transporters P-glycoprotein and breast cancer resistance protein. Journal of Pharmaceutical Investigation. 2022:1-22.

Szczygieł M, Markiewicz M, Szafraniec MJ, Hojda A, Fiedor L, Urbanska K. Systemic Mobilization of Breast Cancer Resistance Protein in Response to Oncogenic Stress. Cancers. 2022;14(2):313.

Xavier CP, Belisario DC, Rebelo R, et al. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resistance Updates. 2022:100833.

Zhang YS, Yang C, Han L, Liu L, Liu YJ. Expression of BCRP/ABCG2 Protein in Invasive Breast Cancer and Response to Neoadjuvant Chemotherapy. Oncology Research and Treatment. 2022;45(3):94-101.

Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resistance Updates. 2006;9(4-5):227-246.

Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, et al. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cellular & Molecular Biology Letters. 2022;27(1):1-29.

Zhang L, Li Y, Wang Q, et al. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Molecular Cancer. 2020/01/17 2020;19(1):10. doi:10.1186/s12943-019-1112-1

Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 2021;125:73-120. doi:10.1016/bs.apcsb.2021.01.003

Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). Apr 2016;8(4):603-19. doi:10.18632/aging.100934

Parton M, Dowsett M, Smith I. Studies of apoptosis in breast cancer. BMJ. 2001;322(7301):1528-1532. doi:10.1136/bmj.322.7301.1528

Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel). Sep 5 2014;6(3):1769-92. doi:10.3390/cancers6031769

Davis JM, Navolanic PM, Weinstein-Oppenheimer CR, et al. Raf-1 and Bcl-2 induce distinct and common pathways that contribute to breast cancer drug resistance. Clinical Cancer Research. 2003;9(3):1161-1170.

Young A, Bu W, Jiang W, et al. Targeting the Pro-survival Protein BCL-2 to Prevent Breast CancerBCL2 Blockade Prevents Breast Cancer. Cancer Prevention Research. 2022;15(1):3-10.

Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11(9):797-797. doi:10.1038/s41419-020-02998-6

Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol. 2021;12:628690-628690. doi:10.3389/fphar.2021.628690

Soderquist RS, Crawford L, Liu E, et al. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nature Communications. 2018/08/29 2018;9(1):3513. doi:10.1038/s41467-018-05815-z

Merino D, Whittle JR, Vaillant F, et al. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci Transl Med. Aug 2 2017;9(401)doi:10.1126/scitranslmed.aam7049

Gao LB, Zhu XL, Shi JX, Yang L, Xu ZQ, Shi SL. HnRNPA2B1 promotes the proliferation of breast cancer MCF-7 cells via the STAT3 pathway. J Cell Biochem. Apr 2021;122(3-4):472-484. doi:10.1002/jcb.29875

Berns K, Sonnenblick A, Gennissen A, et al. Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance. Clin Cancer Res. Nov 1 2016;22(21):5238-5248. doi:10.1158/1078-0432.Ccr-15-2996

Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta. Dec 2016;1866(2):197-207. doi:10.1016/j.bbcan.2016.09.002

Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. Oct 2013;13(10):714-26. doi:10.1038/nrc3599

Hubalek M, Czech T, Müller H. Biological Subtypes of Triple-Negative Breast Cancer. Breast Care (Basel). Mar 2017;12(1):8-14. doi:10.1159/000455820

Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells. 2020;9(8):1896. doi:10.3390/cells9081896

Bledzka K, Schiemann B, Schiemann WP, Fox P, Plow EF, Sossey-Alaoui K. The WAVE3-YB1 interaction regulates cancer stem cells activity in breast cancer. Oncotarget. 2017;8(61):104072-104089. doi:10.18632/oncotarget.22009

Wang W, Kansakar U, Markovic V, Sossey-Alaoui K. Wave3 tyrosine phosphorylation activates the invasion-metastasis cascade of triple negative breast cancer tumors through the maintenance of the cancer stem cell niche. AACR; 2020.

Dustin D, Gu G, Fuqua SAW. ESR1 mutations in breast cancer. Cancer. Nov 1 2019;125(21):3714-3728. doi:10.1002/cncr.32345

Brett JO, Spring LM, Bardia A, Wander SA. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Research. 2021/08/15 2021;23(1):85. doi:10.1186/s13058-021-01462-3

Kim C, Tang G, Pogue-Geile KL, et al. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer. J Clin Oncol. 2011;29(31):4160-4167. doi:10.1200/JCO.2010.32.9615

Hermida-Prado F, Jeselsohn R. The ESR1 Mutations: From Bedside to Bench to Bedside. Cancer Res. Feb 1 2021;81(3):537-538. doi:10.1158/0008-5472.Can-20-4037

Harrod A, Fulton J, Nguyen VTM, et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene. 2017/04/01 2017;36(16):2286-2296. doi:10.1038/onc.2016.382

McDermott MS, Chumanevich AA, Lim CU, et al. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget. Feb 21 2017;8(8):12558-12575. doi:10.18632/oncotarget.14894

Cai Y, Xu G, Wu F, et al. Genomic alterations in PIK3CA-mutated breast cancer result in mTORC1 activation and limit the sensitivity to PI3Kα inhibitors. Cancer Research. 2021;81(9):2470-2480.

Knuefermann C, Lu Y, Liu B, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003/05/01 2003;22(21):3205-3212. doi:10.1038/sj.onc.1206394

Scaltriti M, Rojo F, Ocaña A, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. Apr 18 2007;99(8):628-38. doi:10.1093/jnci/djk134

Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. May 2006;3(5):269-80. doi:10.1038/ncponc0509

Wang H, Sun W. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett. Jan 28 2017;385:137-143. doi:10.1016/j.canlet.2016.10.033

Li H, Wang J, Yi Z, et al. CDK12 inhibition enhances sensitivity of HER2+ breast cancers to HER2-tyrosine kinase inhibitor via suppressing PI3K/AKT. European Journal of Cancer. 2021/03/01/ 2021;145:92-108. doi:https://doi.org/10.1016/j.ejca.2020.11.045

Longley D, Johnston P. Molecular mechanisms of drug resistance. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2005;205(2):275-292.

Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. Dec 2002;13(12):1841-51. doi:10.1093/annonc/mdf337

Knappskog S, Berge EO, Chrisanthar R, et al. Concomitant inactivation of the p53- and pRB- functional pathways predicts resistance to DNA damaging drugs in breast cancer in vivo. Molecular Oncology. 2015/10/01/ 2015;9(8):1553-1564. doi:https://doi.org/10.1016/j.molonc.2015.04.008

Shen JP, Zhao D, Sasik R, et al. Abstract PR08: Combinatorial CRISPR-Cas9 reveals many cancer synthetic lethal interactions are private to cell type. AACR; 2017.

Lu J, Liu J, Guo Y, Zhang Y, Xu Y, Wang X. CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics. Acta Pharmaceutica Sinica B. 2021/10/01/ 2021;11(10):2973-2982. doi:https://doi.org/10.1016/j.apsb.2021.01.007

Lu J, Shao Y, Qin X, et al. CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci Rep. 2017/02/20 2017;7(1):42922. doi:10.1038/srep42922

Qin X, Lu J, Wang P, Xu P, Liu M, Wang X. Cytochrome P450 3A selectively affects the pharmacokinetic interaction between erlotinib and docetaxel in rats. Biochem Pharmacol. 2017/11/01/ 2017;143:129-139. doi:https://doi.org/10.1016/j.bcp.2017.07.013

Wang J, Gan C, Retmana IA, et al. P-glycoprotein (MDR1/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2) limit brain accumulation of the FLT3 inhibitor quizartinib in mice. International Journal of Pharmaceutics. 2019/02/10/ 2019;556:172-180. doi:https://doi.org/10.1016/j.ijpharm.2018.12.014

Dudas J, Ladanyi A, Ingruber J, Steinbichler TB, Riechelmann H. Epithelial to Mesenchymal Transition: A Mechanism that Fuels Cancer Radio/Chemoresistance. Cells. 2020;9(2):428. doi:10.3390/cells9020428

Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy. Acta Naturae. Jan-Mar 2021;13(1):76-90. doi:10.32607/actanaturae.11062

Huang J, Li H, Ren G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int J Oncol. Sep 2015;47(3):840-8. doi:10.3892/ijo.2015.3084

Li W, Liu C, Tang Y, Li H, Zhou F, Lv S. Overexpression of Snail accelerates adriamycin induction of multidrug resistance in breast cancer cells. Asian Pac J Cancer Prev. 2011;12(10):2575-80.

Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS One. 2015;10(7):e0132260. doi:10.1371/journal.pone.0132260

Tordjman J, Majumder M, Amiri M, Hasan A, Hess D, Lala PK. Tumor suppressor role of cytoplasmic polyadenylation element binding protein 2 (CPEB2) in human mammary epithelial cells. BMC Cancer. 2019/06/11 2019;19(1):561. doi:10.1186/s12885-019-5771-5

Sossey-Alaoui K, Pluskota E, Szpak D, Schiemann WP, Plow EF. The Kindlin-2 regulation of epithelial-to-mesenchymal transition in breast cancer metastasis is mediated through miR-200b. Sci Rep. 2018/05/09 2018;8(1):7360. doi:10.1038/s41598-018-25373-0

Moschetta-Pinheiro MG, Colombo J, Godoy BLV, Balan JF, Nascimento BC, Zuccari D. Modulation of Epithelial Mesenchymal Transition after AGTR-1 Gene Edition by Crispr/Cas9 and Losartan Treatment in Mammary Tumor Cell Line: A Comparative Study between Human and Canine Species. Life (Basel). Dec 18 2021;11(12)doi:10.3390/life11121427

Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234-1257. doi:10.1080/10717544.2018.1474964

Yip BH. Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules. 2020;10(6):839. doi:10.3390/biom10060839

Kotani H, Taimatsu K, Ohga R, Ota S, Kawahara A. Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish. PLoS One. 2015;10(5):e0128319. doi:10.1371/journal.pone.0128319

Liu P, Luk K, Shin M, et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. May 7 2019;47(8):4169-4180. doi:10.1093/nar/gkz184

Kim K, Ryu SM, Kim ST, et al. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi:10.1038/nbt.3816

Meccariello A, Tsoumani KT, Gravina A, et al. Targeted somatic mutagenesis through CRISPR/Cas9 ribonucleoprotein complexes in the olive fruit fly, Bactrocera oleae. Arch Insect Biochem Physiol. Jun 2020;104(2):e21667. doi:10.1002/arch.21667

Fei JF, Schuez M, Knapp D, Taniguchi Y, Drechsel DN, Tanaka EM. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc Natl Acad Sci U S A. Nov 21 2017;114(47):12501-12506. doi:10.1073/pnas.1706855114

Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics. 2020;10(12):5532-5549. doi:10.7150/thno.43465

Liang X, Potter J, Kumar S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. Aug 20 2015;208:44-53. doi:10.1016/j.jbiotec.2015.04.024

Qin W, Wang H. Delivery of CRISPR-Cas9 into Mouse Zygotes by Electroporation. Methods Mol Biol. 2019;1874:179-190. doi:10.1007/978-1-4939-8831-0_10

Cheng H, Zhang F, Ding Y. CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications. Pharmaceutics. 2021;13(10):1649. doi:10.3390/pharmaceutics13101649

Xu CL, Ruan MZC, Mahajan VB, Tsang SH. Viral Delivery Systems for CRISPR. Viruses. 2019;11(1):28. doi:10.3390/v11010028

Tervo DG, Hwang BY, Viswanathan S, et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron. Oct 19 2016;92(2):372-382. doi:10.1016/j.neuron.2016.09.021

Torregrosa T, Lehman S, Hana S, et al. Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice. Gene Therapy. 2021/08/01 2021;28(7):456-468. doi:10.1038/s41434-021-00223-3

Pickar-Oliver A, Gough V, Bohning JD, et al. Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of Duchenne muscular dystrophy. Molecular Therapy. 2021/11/03/ 2021;29(11):3243-3257. doi:https://doi.org/10.1016/j.ymthe.2021.09.003

Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Mol Ther. Feb 1 2017;25(2):331-341. doi:10.1016/j.ymthe.2016.12.006

Hung SS, Chrysostomou V, Li F, et al. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo. Invest Ophthalmol Vis Sci. Jun 1 2016;57(7):3470-6. doi:10.1167/iovs.16-19316

Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun. Mar 14 2017;8:14716. doi:10.1038/ncomms14716

Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Therapy. 2021/07/14 2021;doi:10.1038/s41434-021-00258-6

Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. Mar 2016;34(3):334-8. doi:10.1038/nbt.3469

Jarrett KE, Lee CM, Yeh YH, et al. Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep. Mar 16 2017;7:44624. doi:10.1038/srep44624

Ohmori T, Nagao Y, Mizukami H, et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep. Jun 23 2017;7(1):4159. doi:10.1038/s41598-017-04625-5

Stone D, Long KR, Loprieno MA, et al. CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. Molecular Therapy - Methods & Clinical Development. 2021/03/12/ 2021;20:258-275. doi:https://doi.org/10.1016/j.omtm.2020.11.014

Guo Y, VanDusen NJ, Zhang L, et al. Analysis of Cardiac Myocyte Maturation Using CASAAV, a Platform for Rapid Dissection of Cardiac Myocyte Gene Function In Vivo. Circ Res. Jun 9 2017;120(12):1874-1888. doi:10.1161/circresaha.116.310283

El Refaey M, Xu L, Gao Y, et al. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice. Circ Res. Sep 29 2017;121(8):923-929. doi:10.1161/circresaha.117.310996

Hana S, Peterson M, McLaughlin H, et al. Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Therapy. 2021/11/01 2021;28(10):646-658. doi:10.1038/s41434-021-00224-2

Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. Oct 9 2014;159(2):440-55. doi:10.1016/j.cell.2014.09.014

Liang S-Q, Walkey CJ, Martinez AE, et al. AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway. Molecular Therapy. 2021/10/23/ 2021;doi:https://doi.org/10.1016/j.ymthe.2021.10.023

Siegrist CM, Kinahan SM, Settecerri T, Greene AC, Santarpia JL. CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Sci Rep. 2020/11/09 2020;10(1):19307. doi:10.1038/s41598-020-76449-9

Behr M, Zhou J, Xu B, Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm Sin B. Aug 2021;11(8):2150-2171. doi:10.1016/j.apsb.2021.05.020

Yudovich D, Bäckström A, Schmiderer L, Žemaitis K, Subramaniam A, Larsson J. Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells. Sci Rep. 2020/12/28 2020;10(1):22393. doi:10.1038/s41598-020-79724-x

Lee S, Kim Y-Y, Ahn HJ. Systemic delivery of CRISPR/Cas9 to hepatic tumors for cancer treatment using altered tropism of lentiviral vector. Biomaterials. 2021/05/01/ 2021;272:120793. doi:https://doi.org/10.1016/j.biomaterials.2021.120793

Uchida N, Drysdale CM, Nassehi T, et al. Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease. Molecular Therapy - Methods & Clinical Development. 2021/06/11/ 2021;21:121-132. doi:https://doi.org/10.1016/j.omtm.2021.02.022

Kang XJ, Caparas CIN, Soh BS, Fan Y. Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse. Protein & Cell. 2017/11/01 2017;8(11):791-795. doi:10.1007/s13238-017-0477-4

Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells. 2020;9(7):1608. doi:10.3390/cells9071608

Wang X, Tu M, Wang Y, et al. Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Horticulture Research. 2021/05/01 2021;8(1):114. doi:10.1038/s41438-021-00549-4

Zhang X-H, Tee LY, Wang X-G, Huang Q-S, Yang S-H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Molecular Therapy - Nucleic Acids. 2015/01/01/ 2015;4:e264. doi:https://doi.org/10.1038/mtna.2015.37

Vicente MM, Chaves-Ferreira M, Jorge JMP, Proença JT, Barreto VM. The Off-Targets of Clustered Regularly Interspaced Short Palindromic Repeats Gene Editing. Review. Frontiers in Cell and Developmental Biology. 2021-September-17 2021;9(2392)doi:10.3389/fcell.2021.718466

Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24(1):132-141. doi:10.1101/gr.162339.113

Kang S-H, Lee W-j, An J-H, et al. Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nature Communications. 2020/07/17 2020;11(1):3596. doi:10.1038/s41467-020-17418-8

Shen C-C, Hsu M-N, Chang C-W, et al. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Research. 2018;47(3):e13-e13. doi:10.1093/nar/gky1165

Yang H, Ren S, Yu S, et al. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Int J Mol Sci. 2020;21(18):6461. doi:10.3390/ijms21186461

Bashir S, Dang T, Rossius J, Wolf J, Kühn R. Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination. BMC Biotechnology. 2020/10/23 2020;20(1):57. doi:10.1186/s12896-020-00650-x

Li G, Zhang X, Wang H, et al. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors. Int J Biochem Cell Biol. Aug 2020;125:105790. doi:10.1016/j.biocel.2020.105790

Matsumoto D, Tamamura H, Nomura W. A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy. Commun Biol. 2020;3(1):601-601. doi:10.1038/s42003-020-01340-2

Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science. Oct 12 2018;362(6411):236-239. doi:10.1126/science.aau5138

Marino ND, Zhang JY, Borges AL, et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science. Oct 12 2018;362(6411):240-242. doi:10.1126/science.aau5174

Nguyen DN, Roth TL, Li PJ, et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol. Jan 2020;38(1):44-49. doi:10.1038/s41587-019-0325-6

Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Jul 2018;24(7):927-930. doi:10.1038/s41591-018-0049-z

Jiang L, Ingelshed K, Shen Y, et al. CRISPR/Cas9-induced DNA damage enriches for mutations in a p53-linked interactome: implications for CRISPR-based therapies. Cancer Research. 2021:canres.1692.2021. doi:10.1158/0008-5472.Can-21-1692

Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. Feb 2019;25(2):249-254. doi:10.1038/s41591-018-0326-x

Simhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE. Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Mol Ther Methods Clin Dev. Sep 21 2018;10:105-112. doi:10.1016/j.omtm.2018.06.006

Beer SJ, Matthews CB, Stein CS, Ross BD, Hilfinger JM, Davidson BL. Poly (lactic-glycolic) acid copolymer encapsulation of recombinant adenovirus reduces immunogenicity in vivo. Gene Ther. Jun 1998;5(6):740-6. doi:10.1038/sj.gt.3300647

Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Review. Frontiers in Medicine. 2021-March-03 2021;8(115)doi:10.3389/fmed.2021.649896

Rasul MF, Hussen BM, Salihi A, et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Molecular cancer. 2022;21(1):64-64. doi:10.1186/s12943-021-01487-4

Wang S-W, Gao C, Zheng Y-M, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular cancer. 2022;21(1):57-57. doi:10.1186/s12943-022-01518-8

Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune Responses to Viral Gene Therapy Vectors. Molecular Therapy. 2020/03/04/ 2020;28(3):709-722. doi:https://doi.org/10.1016/j.ymthe.2020.01.001

Senís E, Fatouros C, Große S, et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J. Nov 2014;9(11):1402-12. doi:10.1002/biot.201400046

Liu W, Li L, Jiang J, Wu M, Lin P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis Clin Med. 2021;4(3):179-191. doi:10.1093/pcmedi/pbab014

Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17-26. doi:10.1016/j.jconrel.2017.09.012

Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials. 2018;171:207-218.

DiTommaso T, Cole JM, Cassereau L, et al. Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc Natl Acad Sci U S A. Nov 13 2018;115(46):E10907-e10914. doi:10.1073/pnas.1809671115

Published

2024-07-09

How to Cite

Hussen, B. M., B. S. Ismael, S. S. Abdulla, N. H. Jamal, S. A. Mustafa, Z. B. Najmalddin, and M. F. Rasul. “Molecular Mechanisms of Breast Cancer Drug Resistance and CRISPR/Cas9 Strategies to Overcome”. BioMed Target Journal, vol. 2, no. 2, July 2024, p. 1, doi:10.59786/bmtj.221.

Issue

Section

Review

Categories